W/SciFi Calormetry

- Absorber consist of a matrix of tungsten powder and epoxy with embedded scintillating fibers (~ 0.5 mm dia., spacing ~ 1 mm, SF $\sim 2\%$)
- Density ~ 9 g/cm³, X_0 ~ 7 mm, R_M ~ 2.3 cm
- Fabrication of modules requires a labor intensive step of filling fiber assemblies consisting of a series of screens to maintain fiber spacing
- Modules can be made 2D projective (ϕ and η)
- Technology used for the central EMCAL for sPHENIX
- Mass production techniques have been developed at the University of Illinois (UIUC)

W Powder ~ 50 μm

Fiber Assembly

Mold with W powder, fibers + epoxy

Readout with light guides and SiPMs

W/SciFi Energy Resolution

Energy resolution of the sPHENIX W/SciFi after position dependent correction

Beam covering a 2.5 x 2.5 cm² area centered on a tower

Beam covering a 1.0 x 0.5 cm² area centered on a tower

arXiv:2003.13685v1 [physics-inst-det] 28 March 2020 (submitted to IEEE TNS)

W/Shashlik Calorimetry

- A compact shashlik using a high density absorber (e.g., W or a W alloy) can provide energy resolution in the range from ~ 8-15%/√E in a limited space.
- Energy resolution can be tuned by adjusting the sampling fraction and sampling frequency.
- A compact shashlik also offers the possibility of improving the light collection uniformity due to the short light path to the WLS fibers.
- Availability of low cost SiPMs allows reading out each fiber individually. This allows determining the position of a shower even within a tower.

- 80% W/20 % Cu Alloy (X0 = 4.1 mm)
- 38 x 38 x 1.58 mm absorber plates (0.39 X0)
- 1.63 mm scintillating tiles
- Total Stack: 80 W/Cu plates + 79 tiles (31 X0, 268 mm)
- Each WLS fiber is read out by its own SiPM
- Total length including SiPMs: 282 mm

3x3 array of W/Shashlik modules built at UTFSM in Chile and sent to BNL for testing

Shashlik Energy Resolution

GEANT simulation of a W/Shashlik calorimeter with 80W/20Cu absorber plates with the same fraction and sampling frequency as the 3x3 prototype and a total radiation length of 26 X0.